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CHIRAL AND PARITY ANOMALIES
AT FINITE TEMPERATURE AND DENSITY

A.N.Sissakian, 0.Y u.Shevchenkol, S.B. Solganik2

Two closely related topological phenomena are studied at finite density and temperature.
These are chiral anomaly and Chern~Simons term. By using different methods it is shown that
uz =m? is the crucial point for Chern-Simons term at zero temperature. So when u2 <m?,
I influence disappears and we get the usual Chern-Simons term. On the other hand, when
u2 > m?, the Chern~Simons term vanishes because of nonzero density of background fermions.
It occurs that the chiral anomaly doesn’t depend on density and temperature. The connection
between parity anomalous Chern-Simons term and chiral anomaly is generalized on finite
density. These results hold in any dimension both in Abelian and in non-Abelian cases.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Kupaapnas anomanus
H aHOMAIHA Y€THOCTH NPH KOHEYHOH TeMIlepaType H ILIOTHOCTH

A.H.Cucaxan, O.10.Illesuenxo, C.F.Conzanux

H3ydaiotcs nBa GIH3KHX TONOJOTHYECKHX ARTCHUS — KHpa/IbHad aHOMATHS H YepH-CaiMO-
HOBCKHIf WIEH — NpPU NPOH3BONEHOMN IUIOTHOCTH M TEMIlEpaType. Tpu ucnonb3oBanMy painuy-
HbIX METOOB NOKA3aHO, YTO uz = m® sBnserca KPHTHYECKO# TOUKOH wa wieHa Yepu — Caii-
MOHCa IpH Hy/neBOH Temnepatype. Tak, npu |,L2 <m? H-32aBHCHMOCTb HCY€3a€T M MOMy4aeTcs
OBbIYHbIi YepH-caitMOHOBCKMI wien. C OpYroi CTOPOHBI, NIpH uz >m? YePH-CaHMOHOBCKHI
WICH HCYC3AET U3-32 HEHY/IEBOH IUIOTHOCTH (JOHOBEIX ANeKTpoHOB, KupanbHas aHoMannt, xak
OKa3bIBACTCH, HE 3aBHCHT OT XHMHYECKOTO MOTEHUHANA U TeMNepaTyphl. CBA3b MEXITy KHpas-
HOM aHOMaTHel M YepH-CaMOHOBCKHM WIEHOM 0606iueHa Ha ciryqait HeHyneBOH IUTOTHOCTH.

TonyuenHsiit pesysbTaT crpaBe/uTHB B m060i PaIMEPHOCTH Kax 11 abenesa, TaK M 415 Heabe-
JleBa ciyyas.

Pa6ora seinonnena s JlaGopatopuu saepusix npoGaem OUSH.

1. Introduction

Topological objects in modern physics play a great role. In particular, here we are
interested in Chern-Pontriagin and Chern-Simons (CS) secondary characteristic classes.
That corresponds to chiral anomaly in even dimensions and to CS (parity anomaly) in odd
dimensions. Both phenomena are very important in quantum physics. So, chiral anomalies
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in quantum field theory have direct applications to the decay of m, into two photons
(my = 1), in the understanding and solution of the U(1) problem and so on. On the other

hand, there are many effects caused by CS secondary characteristic class. There are, for
example, gauge particles mass appearance in quantum field theory, applications to condense
matter physics such as the fractional quantum Hall effect and high T, superconductivity,

possibility of free of metric tensor theory construction, etc.

It must be emphasized that these two phenomena are closely related. As it was shown
(at zero density) in [1,2] the trace identities connect even dimensional anomaly with the odd
dimensional CS. The main goal of this paper is to explore these anomalous objects at finite
density and temperature.

It was shown [3,4,5] in a conventional zero density and temperature gauge theory that
the CS term is generated in the Eulier-Heisenberg effective action by quantum corrections.
Since the chemical potential term u\y'f\y is odd under charge conjugation we can expect
that it would contribute to P and CP nonconserving quantity — CS term. As we will see,
this expectation is completely justified. The zero density approach usually is a good quan-
tum field approximation when the chemical potential is small as compared with charac-
teristic energy scale of physical processes. Nevertheless, for investigation of topological
effects it is not the case. As we will see below, even a small density could lead to principal
effects.

In the excelient paper by Niemi [1] it was emphasized that the charge density at
| # 0 becomes nontopological object, i.e., contains both topological part and nontopolo-
gical one. The charge density at | # 0 (nontopological, neither parity-odd nor parity-even
object)* in QED, at finite density was calculated and exploited in [6]. It must be empha-

sized that in [6] charge density (calculated in the constant pure magnetic field) contains
parity-odd part corresponding to CS term, as well as parity-even part, which can’t be
covariantized and doesn’t contribute to the mass of the gauge field. Here we are interested
in finite density and temperature influence on covariant parity odd form in action leading
to the gauge field mass generation — CS topological term. Deep insight on this phenomena
at small densities was done in [1,2]. The result for CS term coefficient in QED3 is

[ th % Bm —p) + th % B(m + ) } (see [2], formulas (10.18)). However, to get this result it

was heuristically supposed that at small densities index theorem could still be used and only
odd in energy part of spectral density is responsible for parity nonconserving effect.
Because of this in [2] it had been stressed that the result holds only for small p. However,
as we’ll see below this result holds for any values of chemical potential. Thus, to obtain
trustful result at any values of L one has to use transparent and free of any restrictions on
p procedure, which would allow one to perform calculations with arbitrary non-Abelian
background gauge fields.

It was shown at zero chemical potential in [1,2,3] that CS term in odd dimensions is
connected with chiral anomaly in even dimensions by trace identities. As we’ll see below

*For abbreviation, speaking about parity invariance properties of local objects, we will keep in mind symmetries
of the corresponding action parts.
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it is possible to generalize a trace identity on nonzero density case. The trace identity
connects chiral anomaly with CS term which has j and T dependent coefficient. Despite
chemical potential and temperature give rise to a coefficient in front of CS term, they don’t
affect the chiral anomaly. Indeed, anomaly is a short-distance phenomenon which should
not be affected by medium p and T effects, or more quantitatively, so as the anomaly has
ultraviolet nature, temperature and chemical potential should not give any uitraviolet effect
since distribution functions decrease exponentially with energy in the ultraviolet limit.

This paper is organized as follows. In Sec.2 the independence of chiral anomaly from
temperature and background fermion density is discussed. It is shown in 2-dimensional
Schwinger model that chiral anomaly isn’t influenced not only by chemical potential u, but
also by Lagrange multiplier x at conservation of chiral charge constraint. Besides, we
consider CS term appearance at finite density in even dimensional theories. In Sec.3 we
obtain CS term in 3-dimensional theory at finite density and temperature by use of a few
different methods. In Sec.4 we evaluate CS term coefficient in 5-dimensional theory and
generalize this result on arbitrary non-Abelian odd-dimensional theory. In Sec.5 we gene-
ralize trace identity on finite density on the basis of the previous calculations. Section 6 is
devoted to concluding remarks.

2. Chiral Anomaly and Chern-Simons Term in Even Dimensions

As is well known, chemical potential can be introduced in a theory as Lagrange multi-
plier at corresponding conservation laws. In nonrelativistic physics this is conservation of
full number of particles. In relativistic quantum field theory these are the conserving
charges. The ground state energy can be obtained by use of variational principle

*A .
(¥ Hy) = min (1)
under charge conservation constraint for relativistic equilibrium system
A
(¥'Qy) = const, @

A A
where H and Q are Hamiltonian and charge operators. Instead, we can use method of
undetermined Lagrange multipliers and seek absolute minimum of expression

W(H - n0) ), (3)

A A
wher i is Lagrange multiplier. Since Q commute with the Hamiltonian, (JO) 1s conserved.

On the other hand, we can impose another constraint, which implies chiral charge
conservation

A
(W) = const, O]
i.e., in Lagrange approach we have

(V' - K(Azs) Y) = min, &)
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A
where « arises as Lagrange multiplier at (JOS) = const constraint. Thus, | corresponds to

nonvanishing fermion density (number of particles minus number of antiparticles) in back-
ground. Meanwhile, « is responsible for conserving asymmetry in numbers of left and right
handed background fermions.

It must be emphasized that the formal addition of a chemical potential in the theory
looks like a simple gauge transformation with the gauge function . However, it doesn’t
only shift the time component of a vector potential but also gives corresponding prescri-
ption for handling the Green function poles. The correct introduction of a chemical
potential redefines the ground state (Fermi energy), which leads to a new spinor propagator
with the correct € prescription for poles. So, for the free spinor propagator we have (see,
for example, [7,8])

+m
G, W =— . 2 2 ) 2 ©)
(p0+zesgnp0) -p° —m
where p = (@, + 1, p). Thus, when [ = 0 one at once gets the usual € prescription because

of the positivity of p, sgn p,. In Euclidian metric one has

+tm

G W) = = > @

Py + p’+m
where p = (g + ik, P). In the presence of a background Yang-Mills field we consequently

have for the Green function operator (in Minkovsky’s space)

1
(%) — m” + ie(p, + 1) sgn (py)

G = (¥ — m) )

where T =7+ pd, n, =Py~ 8A (%).

Now we’ll consider chiral anomaly. It was shown in [9], that chiral anomaly doesn’t
depend on p and 7. In [9] the direct calculations in 4-dimensional gauge theory were
performed by use of imaginary and real time formalism, by using the Fujikawa method and
perturbation theory. These calculations are rather cumbersome. To clear understand the
nature of anomaly [ independence (T independence will be discussed later) we’ll consider
here the simplest case -~ 2-dimensional QED and rederive result of [9] by use of the
Schwinger nonperturbative method [10]. So, one can write

Jh=—igtr

Y#G(x, ¥) exp ( -ig Ja£ta® N , ©)

Xox
where G(x, x’) is the propagator satisfying following equation
TH@, - igA (1) Glx, ¥) = 8(x - X). (10)

Following Schwinger we use anzats
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Glx, ¥) = G (x, ¥') exp [ig(®(x) — ()], (11)

where G O(x, x’) is the free propagator
THG Oz, x') = 8(x - x).

Thus, for ¢ we can write ypaucb = y“A“. From (6) we have

2 2
Go(x x) = j dap eiP(x - x) _ )4 =—ip Ju eip(.\' -y _ 1 _
(2m)? P +ie(py + ) sgn P, (2m)? P+ ie
+ oo dp + oo dp
1 0 ~ ip(x — x) 1
-2 ] E J om0 Py senpy 7¢O 7 ie]. (12)

So, beside the usual zero density part p-dependent one appears. Further, we have to take
off regularization in the current by use of symmetrical limit x — x’. After some simple
calculations it is clearly seen that all U-dependent terms after taking off the limit disappear.
Thus, contribution to the current arises from the U-dependent part only. So

’ 2 HAV
Ju=i£_[5uV_a_a]Av’

2n 82
2 [e5NY
p_ 8 [ onv_  pad 0
Jg —zzn{e £ 2 JAV (13)
and we get the usual anomaly in the chiral current
. 2 2
B H_ .8 _uv .8
BuJ =0, auJS =i5-€ auAv + i . F. (14)

Let’s now consider x influence on the chiral anomaly. Since, as we’ve seen above, X is
directly connected to chiral charge, it would be natural to expect some k effect on chiral
anomaly. However, the rather amazing situation occurs. The demand of chiral charge con-
servation (instead of the usual charge conservation) on the quantum level doesn’t influence
chiral anomaly. Really, in 2-dimensions introduction of Lagrange multiplier x at the

chiral charge conservation gives the term KGY 57 0\41 = K'GY l\y in Lagrangian. So, x affects
in the same way as |, i.e., k doesn’t influence the chiral anomaly (it is also seen from direct
calculations which are similar to presented above for the case with i). That could be
explained due to ultraviolet nature of the chiral anomaly, while k(1) doesn’t introduce new
divergences in the theory.

From the above calculations it is clearly seen the principle difference of chiral anomaly
and CS. The ultraviolet regulator — P exponent gives rise to the anomaly, but (as we’ll see
below) doesn’t influence CS. Thus, it is natural, that the anomaly doesn’t depend on y, x
and T because it has ultraviolet regularization origin, while neither density nor temperature
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does affect the ultraviolet behaviour of the theory. The general and clear proof of axial
anomaly temperature independence will be presented in Sec.5 on the basis of the trace
identities.

We now consider CS in even dimensional theory. From the definition one has

=2 = [aPx ). (15)

Since axial anomaly doesn’t depend on «, effective action contains the term proportional to
anomalous Q5 charge with k as a coefficient. The same is for a chiral theory. There,

effective action contains the term proportional to anomalous Q charge with [ as coefficient,
see for example [11,12,13]. So, we have

Al = - x [ dx WIA] (16)
in conventional gauge theory and
hiral
AL =y [ ax Wil 17

in the chiral theory. Here W[A] — CS term. Thus we get CS with Lagrange multiplier as a
coefficient.

It is well known that at nonzero temperature in § — O limit the dimensional reduction
effect occurs. So, extra t dependence of CS term in (16) disappears and CS can be treated
as a mass term in 3-dimensional theory with ix /7T coefficient (the same for chiral theory
with W see [11]). For anomalous part of effective action we have

AL, =~ ixPWIAL AL = — iuBW(A] (18)

off

in conventional and chiral gauge theories correspondingly. The only problem arising in a
treating of CS as a mass term is that the coefficient is imaginary, see discussions on the
theme in [11,13]. One can notice that results (16), (17) and (18) hold in arbitrary even dimen-
sion. Let us stress that we don’t need any complicated calculations to obtain (16—18). The
only thing we need is the knowledge of chiral anomaly independence from U, K, and B.

3. CS in 3-Dimensional Theory

3.1. Constant Magnetic Field. Let’s first consider a (2 + 1) dimensional Abelian theory.
Here we’ll use constant magnetic background. We’ll evaluate fermion density by perfor-
ming the direct summation over Landau levels. As a starting point, we’ll use the formula
for fermion number at finite density and temperature [1]

Ne-Llsm(lm T 6L, 6(-1)
_—znt[ P j+ exp (- Bu—A ) +1 exP(—B(kn—u))+1

Ly Boe g
=s 2t BRr-%) — ngn(u A (19)

n

t\)lv—‘
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Landau levels in the constant magnetic field have the form [14]
Ag=—msgn (eB), A =+ \2n|eB|+m?, (20)

where n =1, 2,... It is also necessary to take into account in (19) the degeneracy of Landau
levels. Namely, the number of degenerate states for each Landau level is | eB /27 per unit
area. Even now we can see that only zero modes (because of sgn (eB)) could contribute to
the parity odd quantity. So, for zero temperature, by using the identity

sgn (a——b)+sgn (a+b)=2sgn (a) 9(|al - Ibl),

leBl sgn (L + m sgn (eB)) =

4r
_ leBl sgn () O(|pl - Iml)+ et ] sgn (eB) sgn (m) O(|m| - lul), (1)
4n 4n

one gets for zero modes

and for nonzero modes

leBl sgn(u—VaneBl+m2)+sgn(u+V2n|eB|+m2 =
2n

n=1

= I;ﬁl sen () Y, 0l - VanleB| + m?). 22)

n=1

1
2

Combining contributions of all modes we get for fermion density

|eB] - NA 2, 1 leB|
Py Sgn(u)ze(lul— ‘_nleB|+m)+2 o

n=1

p= sgn (W(lul = Iml) +

1eB _ lesl [ z-mz} 1
+22nsgn(m)6(|m|—-|u|)— . sgn(u)[lnt 2 TeB +2 X

x6(lnl = Iml)+ &2 sgn (my 6(Im| - Iul). 23)

Here we see that zero modes contribute both to parity-odd and to parity-even part, while
nonzero modes contribute to the parity-even part only (note that under parity transformation
B — — B). Thus, fermion density contains parity-odd part, leading to CS term in action
after covariantization, as well as parity-even part. It is straightforward to generalize the
calculations on finite temperature case. Substituting zero modes into (19) one gets

Bl 171
No='§—n'5[gﬁ<u+msgn(e3»]=

_ les] sh (B) sh (Bm)
= Tan [ ch () + ch (Bm) * 8" B) By + ch B ] @9

$0, extracting parity-odd part, one gets for CS at finite temperature and density
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1
1+ ch (Bp)/ch Bm)

_€eB sh (Bm)
CS ™ 4w ch (Bw) + ch (Bm) 411:

B (Bw) (25)

So, the result coincides with the result for CS term coefficient by Niemi [2] obtained for
small | [ th % Bm — ) + th % B(m + 1) ] . It is obviously the limit to zero temperature.

The lack of this method is that it works only for Abelian and constant field case.

This result at zero temperature can be obtained by use of Schwinger proper-time
method. Consider (2 + 1) dimensional theory in the Abelian case and choose background
field in the form

1

AM = 2% FY  FY = Const.
To obtain the CS term in this case, it is necessary to consider the background current
&S
By eff
=g,

rather than the effective action itself. This is because the CS term formally vanishes for

such the choice of A" but its variation with respect to A produces a nonvanishing current.
So, consider

J*y=-igtr [Y*G(x, b8 N (26)
where ‘
G(x, ¥) = exp [— ig | dg AMG) ](x 1Glx). 7)
Let’s rewrite the Green function (8) in a more appropriate form
A 8(p, + W) sgn(pO» 0(= (p, + 1) sgn(py))
=(m-m) + 5 . (28)
(Yn) —m*+ie () —m”—ie

Now, we use the well-known integral representation of denominators

_ . tios
aiiO—:Flz';dsc ’

which corresponds to introducing the «proper-time» s into the calculation of the Eulier—
Heisenberg Lagrangian by the Schwinger method [15]. We obtain

G = (it — m) | —i | ds exp Gis [ — m + i€)) 8((p, + ) sgn (pp) +
0

+1 [ ds exp (~is (B — m? - ie)) 8- (po + W) s8n (By)) |. (29)
0
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For simplicity, we restrict ourselves only to the magnetic field case, where A0=0,
[ﬁo, ﬁu] = 0. Then we easily can factorize the time dependent part of the Green function.

By using the obvious relation

~ 1
(0’ = (py +* =7+ g, P (30)
one gets )
dpo d2 - e 55(52—’"2) —isn’ isgoF /2
G(x, x) x_))(,:-ij-g(;f)%(ﬂ—m)jds[e 0 e e -
0

- 6(— (po + !»L) sgn (po))

2 2 L2, e 2 L2 .
isp, —m’) - cF/2 —is(p -m’) +isx" —isgoF/2
(e 0 e e¥ / +e 9 e e ¥ / N 3D

Here the first term corresponds to the usual p-dependent case and there are two additional
u-dependent terms. In the calculation of the current the following trace arises:

isgoF/ 2] -

tr [yHoyR—m) e

Al

I*F|

s
sin (g]*F|s)—2imLsin(g|*F|s),

|*F|

=2n"g"" cos (g l *Fls) +2

where "FH = e”aBFaB/Z and [*Fl = \fB2 - E2. Since we are interested in calculation of

the parity-odd part (CS term) it is enough to consider only terms proportional to the dual

strength tensor "F ¥, On the other hand, the term 2r*g* cos (g | *Fls) at v = 0 (see expres-
sion for the trace, we take in mind that here there is only magnetic field) also gives nonzero

contribution to the current J° [6]

0 _ IgBl [z—mz} 1 _
oven =8 o (Im %g—Br +5 |6(ul = Im. (32)

This part of current is parity invariant because under parity B — — B. It is clear that this
parity-even object does contribute neither to the parity anomaly nor to the mass of the
gauge field. Moreover, this term has magnetic field in the argument’s denominator of the
cumbersome function — integer part. So, the parity even term seems to be «noncova-
riantizable», i.e., it can’t be converted in covariant form in effective action. Since we
explore the parity anomalous topological CS term, we won’t consider this parity even term.

So, only the term proportional to the dual strength tensor “F # gives rise to CS. The relevant
part of the current after spatial momentum integration reads
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2 2_ 2
Ib=E m'rt Jdpojds[ B0 ) _
Tt

— oo

. . o~2 2 Lo ~2 2
—9(—j)'osgn(p0))(eu(p0 ™ e B '")”. (33)

Thus, we get besides the usual CS part [4], also the pu-dependent one. It is easy to calculate
it by use of the formula

x2—m2

I .2 2 ’
fdse's(x'm)=7t(8(x2—m2)+i'P L J
o T

and we get eventually

JE 'T_H *FH[1 = 6(= (m + ) sgn (m)) — 6(= (m — ) sgn (m))] =

=ﬂje<m u)L*F“ (34)

Let’s now discuss the non-Abelian case. Then AM = TaA;l and

My=—igr WMT,Gx, 1)1,

It is well known [4,16] that there exist only two types of the constant background fields.
The first is the «Abelian» type (it is easy to see that the self-interaction f abcAgA: disappears
under that choice of the background field)

A“ S FYH (35)

al’v

where n_ is an arbitrary constant vector in the color space, F YH = Const. The second is the

pure «non-Abelian» type
A" = Const. (36)

Here the derivative terms (Abelian part) vanish from the strength tensor and it contains only
the self-interaction part F ! = gf ab ‘ADAY. It is clear that to catch Abelian part of the CS

term we should consider the background field (35), whereas for the non-Abelian (derivative
noncontaining, cubic in A) part we have to use the case (36).

Calculations in the «Abelian» case reduce to the previous analysis, except the trivial
adding of the color indices in the formula (34):

2
- m 2_ 2 *
T 80 u)3—4n FX. (37)
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In the case (36) all calculations are similar. The only difference is that the origin of term
Gqu M in (30) is not the linearity A in x (as in Abelian case) but the pure non-Abelian

A* = Const. Here term Gqu HV in (30) becomes quadratic in A and we have
3
p__m 2_ .2y 8 _pop o,f
Ja m 6(m” — u) pym € tr [T A"A™]. (38)
" Combining formulas (37) and (38) and integrating over field Az we obtain eventually

Sett = Ty 80" = 1) TWIAL (39)
where W[A] is the CS term

2
=& [ 43, e _2
Wi =4 JatwulFoa, -2eana.).
In conclusion note, that it may seem that covariant notation used through this section is
rather artificial. However, the covariant notation is useful here because it helps us to extract

Levi-Chivita tensor corresponding to parity anomalous CS term.

3.2. Arbitrary Gauge Field Background. One can see that the procedures we’ve used
above to calculate CS are noncovariant. Indeed, both of them use the constant magnetic
background. Here we’ll use completely covariant free of any restriction on gauge field
procedure, which allows us to perform calculations at once in non-Abelian case. We’ll
employ the perturbative expansion. The zero temperature case within this procedure has
been explored in [17].

Let’s first consider non-Abelian 3-dimensional gauga theory. The only graphs whose
P-odd parts contribute to the parity anomalous CS term are shown in Fig.1.

So, the part of effective action containing the CS term looks as

1SS = % Ja,0fe™amme) +
x P

+ % | A () [ &= 4 )4 1V, n, (40)
x pr
a) b)

Fig.1. Graphs whose P-odd parts contribute to the
CS term in non-Abelian 3D gauge theory
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where polarization operator and vertices have a standard form
) = ¢ [ tr [yPS(p + b 1) ¥'SCs ),

k
I™%p, 1) = g [ tr [yHS( + r + ks ) ¥'SCr + ks 1) ¥ Sk ), @1)
k

where S(k; ) is the Euclidean fermion propagator at finite density and temperature (7) and

the following notation is used J— zjdx de and J— = 2 I(Z )2 First consider the
X O n =—o0o0

second order term (Fig.1, graph (a)). It is well known that the only object giving us the

possibility to construct P- and T-odd form in action is Levi—Chivita tensor*. Thus, we will

drop all terms noncontaining Levi-Chivita tensor. Signal for the mass generation (CS term)

is TI*(p? = 0) = 0. So we get

M = & (- i2me™p ) 5 . (42)
& (k + m°)
After some simple algebra one obtains
m = 12mg2 wVo, Z I d’k S S—
Py B,.=_m 2n)? (2 +md)?
.o, 43)
—ome Ve L 41
i2mg” e p“B 2 PR
n==-—oo n
where ® = (2n +1)n/B + il Performing summation we get
2
v _ - 8 wva, 1 4
M =iy e ot B T By e () “9
It is easily seen that in — oo limit we’ll get zero temperature result [17]
E_ V9% -
T—r py 9(m u?). (45)
In the same manner handling the third order contribution (Fig.1b) one gets
2
e = 28 lep,va i 2 J d“k m(k + m3)
B, 22 en® &*+md)
i d% 1
- i2mg e”wx 2 f ST IEN] (46)
@n? k% +m )

n:—co

*In three dimensions it arises as a trace of three y matrices (Pauli matrices)
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and further all calculations are identical to the second order

pvor _ S_ uvo 1
n Pam € th (Bm) 1+ ch(Bu)/ch (Pm) 0

Substituting (44), (47) in the effective action (40) we get eventually

CS = 1 pva 2
Lt =t Bm T 7 G o £ [ g% (AuavAa 2eAA \Aa) (48)

Thus, we’ve got CS term with temperature and density dependent coefficient.

4. Chern-Simons in Arbitrary Odd Dimension

Let’s now consider 5-dimensional gauge theory. Here the Levi—Chivita tensor is

5-dimensional €*Y*BY and the relevant graphs are shown in Fig.2.
The part of effective action containing CS term reads
1 .
1S = 3 fAu(x) [e BENA (p) A (r) TV, 1) +
X D, r

+ % JAu(x) | eiorre 94 (p) A1) Ag(s) B, 1, 5) +

x p. 1S

s5fam [ eH o)A AW AL T, 5. @9)
X brsq

All calculations are similar to 3-dimensional case. First cosider third-order contribution
(Fig.2a)

%, r) = g [ tr [Y5S(o+ r+ ks W) ¥ VS0 + ks 1) ¥oSCk; . (50)

k
Taking into account that trace of five Y matrices in S5-dimensions is

tr [yHy Yy Sy Py Py = gietvobe,

APAVAY]
YAVAY)

NN

a) b) c)

Fig.2. Graphs whose P-odd parts contribute to the CS term in non-Abelian 5D theory
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we extract the parity-odd part of the vertices

< 1
1 (i4me*V*B9p 8o T3 51
B _2_ I(210“ P % + m?y?
or in more transparent way
- [d% 1
e = i4mg3e"1 vofo DI < =
*op _2_ / et (@ + K + m?)’
n=—oo n
= idmg e"VoPo p 2 j 1 5 - (52)
‘“’B,,=_,, (641;) o +m
Performing summation one comes to
. | & 8 ,
Hva _ nvofo
=it B G /e m) 1622 ¢ 2
In the same way operating graphs (b) and (c) (Fig.2) one will obtain
VB = j th (Bm) ! g HveBog (54)
1+ ch (Bw) /ch (Bm) 8n2 ¢
and
1 5
VY = ;i th (Bm) £ puvobo (55)

1+ ch (Bu)/ch (Bm) 1672

Substituting (53)—(55) in the effective action (49) we get the final result for CS in
5-dimensional theory

cs _ 1 g [ uvopy
Tee = th Bm) T (Br)/ch (Bm) agn* * ‘ g

3 3.2
X tr (AuavAaaﬁAy+ ZBAAADA + T A AAAA ] (56)

It is remarkable that all parity odd contributions are finite both in 3-dimensional and in
5-dimensional cases. Thus, all values in the effective action are renormalized in a standard
way, i.e., the renormalizations are determined by conventional (parity even) parts of ver-
tices.

From the abovc direct calculations it is clearly seen that the chemical potential and
temperature dependent coefficient is the same for all parity odd parts of diagrams and
doesn’t depend on space dimension. So, the influence of finite density and temperature on
CS term generation is the same in any odd dimension:
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1S5 = th (Bm) 1 RWIA] Py om 8(m? — pd) TWIAL,  (57)
off = 1+ ch (Bu) /ch (Bm) Tml '

where W[A] is the CS secondary characteristic class in any odd dimension. Since only the
lowest orders of perturbative series contribute to CS term at finite density and temperature
(the same situation is well known at zero density), the result obtained by using formally
perturbative technique appears to be nonperturbative. Thus, the ji- and T-dependent CS term
- coefficient reveals the amazing property of universality. Namely, it does depend on neither
dimension of the theory nor Abelian or non-Abelian gauge theory is studied.

The arbitrariness of | gives us the possibility to see CS coefficient behaviour at any
masses. It is very interesting that uz = m? is the crucial point for CS at zero temperature.
Indeed, it is clearly seen from (57) that when u2 < m2, p-influence disappears and we get
the usual CS term Ic?fs = tW[A]. On the other hand, when uz > m2, the situation is abso-
lutely different. One can see that here the CS term disappears because of nonzero density
of background fermions. We’d like to emphasize the important massless case m = 0 consi-
dered in many a papers, see for example [2,4,18]. Here even negligible density or tempe-
rature, which always takes place in any physical processes, leads to vanishing of the parity
anomaly. Let us stress again that we nowhere have used any restrictions on M. Thus we not
only confirm result in [2] for CS in QED, at small density, but also expand it on arbitrary

M, non-Abelian case and arbitrary odd dimension.

5. Trace ldentity

Here, we’ll consider trace identity at finite temperature and density. First of all, by
using well-known trace identity at finite temperature [1,2], we’ll present the simple reasons
that chiral anomaly doesn’t depend on temperature in any even dimension. Indeed, at finite
temperature and zero density trace identity still holds and one has [1,2]

+ oo
1 m 1
(Nyp=—= — 3| ) dx (anomaly) + | dxo, tr (x | iI“iI"C —p=—==)1. (58)
B 2[3_230 m2+wi J J. H0+1Vm2+co,2,

The second term at the left-hand side is a surface term, which doesn’t contribute to topo-

logical part of the trace identity [1,2]. Thus, for topological part, we are interested in, trace
identity takes the form

+ oo
topological _ _ _1 _m
(NY ;PO ogical _ _ % _Zm . coi (J’ dx (anomaly)). (59

The result for the left-hand side of Eq.(59) we know in arbitrary odd dimension. Really,
substituting (57) in



28 Sissakian A.N. et al. Chiral and Parity Anomalies

logical _ N CS
- topo! 0g1 cff 60
W)y = Mgt = (60)
and taking into account that
+ oo
1 m_ 1 sh(Pm :
2an w+m? 4 1+ch(Bm)’ 6
= e= 00 n

one can see that the only possibility to reconcile left and right sides of Eq.(59) is to put
temperature independence of anomaly. Thus, we’ve got that axial anomaly doesn’t depend
on temperature in any even-dimensional theory.

Further, we can generalize trace identity for topological part on arbitrary finite density.
Really, from (57) and (60) we get

1
1 + ch (Bp) /ch (Bm)

(N)goy= =5 th (Bm) J s anomay), ©2

where <N>§Sp — odd part of fermion number in D-dimensional theory at finite density

and temperature, (anomaly) — axial anomaly in (D — 1)-dimensional theory. On the other
hand, as we have seen above, the anomaly doesn’t depend on U in 2 and 4 dimensions (and
doesn’t depend on T in any even-dimensional theory). Our comprehension of the problem
allows us to generalize this on arbitrary even dimension. Indeed, anomaly is the result of
ultraviolet regularization, while u (and T) don’t effect on ultraviolet behavior of a theory.
Taking in mind (62) and that at finite density

+ oo
1 m
2 wcoi+m2

n=-

1
1+ ch (Bu)/ch (Bm) ’

= th (Bm) (63)

topologlcal

CS
we can identify (N) and (N)B u So, we get generalized on finite density trace

identity for topologlcal part of fermion number

+ oo
topologlcal 1 m
(N)IS = (N) = E _z' SN (J dx (anomaly)). (64)

The physical underground of formula (64) could be more clearly understood if we remember
calculations we’ve performed in Sec.3.1 by use of summation over Landau levels. Really,
we’ve seen that only zero modes contribute to P-odd part in contrast to P-even part which
is contributed by all modes. Therefore, index theorem and trace identities hold only for
parity-odd (topological) part of fermion number at finite density.

Thus, Eq.(64) connects CS term and chiral anomaly in arbitrary dimensional theory at
finite density and temperature.
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6. Conclusions

The finite temperature and density influence on CS term generation is obtained in any
odd dlmensmnal theory both for Abelian and for non-Abelian cases. It is of interest that

p =m?is the crumal point for CS at zero temperature. Indeed, it is clearly seen from (57)
that when u < m M-influence disappears and we get the usual CS term 1€ ff = ntW[A]. On

- the other hand, when u > m the CS term disappears because of nonzero density of back-
ground fermions.

The p and T-dependent CS term coefficient reveals the amazing property of univer-
sality. Namely, it does depend on neither dimension of the theory nor Abelian or non-
Abelian gauge theory is studied. It must be stressed that at m = 0 even negligible density
or temperature, which always take place in any physical processes, leads to vanishing of the
parity anomaly.

The medium effects such as finite density and temperature influence on chiral anomaly
have been studied. The simple and general arguments that chiral anomaly is independent of
temperature have been presented. It is shown that even if we introduce conservation of
chiral charge as the constraint, the chiral anomaly isn’t effected. By using the fact that
chiral anomaly doesn’t depend on temperature and density we explore the CS number
appearance of CS number in even-dimensional theories under two type of constraints. These
are charge conservation with Lagrange multiplier |t (conventional chemical potential) and
chiral charge conservation with Lagrange multiplier , what corresponds to conservation of
the left (right)-handed fermions asymmetry in the background.

On the other hand, the chiral anomaly independence of density and temperature
together with our direct calculations of CS coefficient permit us the simple generalization
of trace identity on finite density case. Thus, the connection between CS term and chiral
anomaly at finite density and temperature is obtained in artibrary dimensional theory.
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